NEW FLAVOR DROP: Vine Watermelon has arrived! Tear into Summer

Free Shipping on orders over $130

Search

Close Cart

Add your deal, information or promotional text

Research

There is a plethora of published research on the important role of mucosal immunity in all aspects of health. And, how ARMRA's clinically-backed ingredient, colostrum, strengthens this pathway for foundational health benefits. 

You've got better things to do than the legwork and guesswork. We've got you covered. But if you are curious, below is a peek at some of the research behind the development of ARMRA™ Colostrum.

Research on patent-pending ARMRA™ Colostrum:

Biological activities of a novel bovine colostrum-based proprietary concentrate, ARMRA, at the cellular level (Gitte S., 2021).

Select studies on the composition and application of colostrum bioactive compounds (1,2,3,4)

Select studies demonstrating the relevance of the immune mucosal barrier as a therapeutic target and the pathological implications of its disruption by modern threats- including bacterial and viral infections (1-4), food allergy (5-9), various autoimmune conditions (10-14), autism (15-17), among others (18,19).

1. Bischoff, Stephan C et al. “Intestinal permeability--a new target for disease prevention
and therapy.” BMC gastroenterology vol. 14 189. 18 Nov. 2014.
2. Chelakkot et al, “Mechanisms regulating intestinal barrier integrity and its pathological implications.” Experimental & Molecular Medicine 50, Article number: 103 (2018).
3. Vancamelbeke, Maaike, and Séverine Vermeire. “The intestinal barrier: a fundamental role in health and disease.” Expert review of gastroenterology & hepatology vol. 11, (2017): 821-834.
4. Groschwitz, Katherine R, and Simon P Hogan. “Intestinal barrier function: molecular regulation and disease pathogenesis.” The Journal of allergy and clinical immunology vol. 124,1 (2009): 3-20
5. Järvinen KM, Konstantinou GN, Pilapil M, et al. Intestinal permeability in children with food allergy on specific elimination diets. Pediatr Allergy Immunol. 2013;24(6):589–595. doi:10.1111/pai.12106
6. Samadi, Nazanin et al.. The role of gastrointestinal permeability in food allergy. Annals of Allergy, Asthma & Immunology, Volume 121, Issue 2, 168 - 173Ch
7. Stefka A. T. et al. .2014. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. USA 111: 13145–13150.
8. Perrier C, Corthesy B. Gut permeability and food allergies. Clin Exp Allergy 2011; 41: 20–28
9. Chahine, B.G. & Bahna, S.L. (2010). The role of the gut mucosal immunity in the development of tolerance versus development of allergy to food. Current Opinion in Allergy and Clinical Immunology, 10, 4, 394-399
10. Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol (2015) 8(5):5153–60.
11. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases.
12. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci (2012) 1258:25–33.
13. Carlos R Camara-Lemarroy, Luanne Metz, Jonathan B Meddings, Keith A Sharkey, V Wee Yong, The intestinal barrier in multiple sclerosis: implications for pathophysiology and
therapeutics, Brain, Volume 141, Issue 7, July 2018, Pages 1900–1916.
14. Cereijido, M., Contreras, R.G., Flores-Benítez, D., Flores-Maldonado, C., Larre, I., Ruiz, A. & Shoshani, L. (2007). New diseases derived or associated with the tight junction. Archives of Medical Research, 38, 5, 465-478

15. Liu Z., Li N., Neu J. Tight Junctions, Leaky Intestines, and Pediatric Diseases. Acta Paediatr. 2007;94:386–393.
16. White John F. Intestinal Pathophysiology in Autism. Exp. Biol. Med. 2003;228:639–649.
17. Siniscalco D., Brigida A.L., Antonucci N. On overview of neuro-immune gut brain axis dysfunction in ASD. AIMS Mol. Sci. 2018;5:166–172.
18. R.C. Anderson, J.E. Dalziel, P.K. Gopal, S. Bassett, A. Ellis and N.C. Roy (2012). The Role of Intestinal Barrier Function in Early Life in the Development of Colitis, Colitis, Dr 19.
Fukata (Ed.), ISBN: 978-953-307-799-4, InTech, Available from:
http://www.intechopen.com/books/colitis/the-role-of-intestinal-barrier-function-in-early-life-inthe-development-of-colitis.


Select studies demonstrating immaturity of the intestinal mucosal barrier in infants, pathological implications, and mechanisms by which infant milk facilitates maturation of the mucosal barrier and immune protection (1-13).


1. Neu, J. (2007). Gastrointestinal maturation and implications for infant feeding. Early Human Development, 83, 12, 767-775.
2. Maheshwari, A. & Zemlin, M. (2009). Ontogeny of the intestinal immune system. [Haematologica Reports], 2, 10, 18-26.
3. Mayer, L. (2003). Mucosal immunity. Pediatrics, 111, 6 III, 1595-1600.
4. Cummins, A.G. & Thompson, F.M. (2002). Effect of breast milk and weaning on epithelial
growth of the small intestine in humans. Gut, 51, 5, 748-754.
5. Udall, J., Pang, K., Fritze, L. et al. Development of Gastrointestinal Mucosal Barrier. I. The Effect of Age on Intestinal Permeability to Macromolecules. Pediatr Res 15, 241–24 (1981).
6. Udall, J., Colony, P., Fritze, L. et al. Development of Gastrointestinal Mucosal Barrier. II. The Effect of Natural Versus Artificial Feeding on Intestinal Permeability to Macromolecules. Pediatr Res 15, 245–249 (1981).
7. Catassi, C., Bonucci, A., Coppa, G.V., Carlucci, A. & Giorgi, P.L. (1995). Intestinal permeability changes during the first month: Effect of natural versus artificial feeding. Journal of Pediatric Gastroenterology and Nutrition, 21, 4, 383-386.
8. Cacho, Nicole Theresa, and Robert M Lawrence. “Innate Immunity and Breast Milk.” Frontiers in immunology vol. 8 584. 29 May. 2017.
9. Palmeira, Patricia; Carneiro-sampaio, Magda. Immunology of breast milk. Rev. Assoc. Med. Bras., São Paulo , v. 62, n. 6, p. 584-593, Sept. 2016.
10. Taylor, S.N., Basile, L.A., Ebeling, M. & Wagner, C.L. (2009). Intestinal permeability in preterm infants by feeding type: Mother's milk versus formula. Breastfeeding Medicine, 4, 1, 11-15.
11. Wold, A. & Adlerberth, I. (2000). Breast feeding and intestinal microbiota of the infant -
implications for protection against infectious diseases. Advances in Experimental Medicine and Biology, 478, 77-93.
12. Verhasselt, V. (2010). Neonatal tolerance under breastfeeding influence. Current Opinion in Immunology, 22, 5, 623-630
13. Schreiber, R.A. & Walker, W.A. (1988). The gastrointestinal barrier: Antigen uptake and perinatal immunity. Annals of Allergy, 61, 6 Pt 2, 3-12.


Additional studies demonstrating efficacy of components of first milk in fortifying mucosal immunity (1-5), including increasing adherence of only healthy microbiome bacteria in the gut (6), increasing respiratory microbiome diversity (7) - and
protecting against the development of and/or expediting recovery from respiratory and GI illnesses (8-24).


1. Newburg, D., Walker, W. Protection of the Neonate by the Innate Immune System of Developing Gut and of Human Milk. Pediatr Res 61, 2–8 (2007).
2. Jakaitis, Brett M, and Patricia W Denning. “Human breast milk and the gastrointestinal innate immune system.” Clinics in perinatology vol. 41,2 (2014): 423-35.
doi:10.1016/j.clp.2014.02.011
3. Snead T. Morrin, Rebecca A. Owens, Marie Le Berre, Jared Q. Gerlach, Lokesh Joshi, Lars Bode, Jane A. Irwin, and Rita M. Hickey. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. Journal of Agricultural and Food Chemistry 2019 67 (7), 1902-1917.
4. Kamau, S.M., Lu, R.R., Chen, W., Liu, X.M., Tian, F.W., Shen, Y. & Gao, T. (2010).Functional significance of bioactive peptides derived from milk proteins. Food ReviewsInternational, 26, 4, 386-401
5. Prosser, C., Stelwagen, K., Cummins, R., Guerin, P., Gill, N. & Milne, C. (2004). Reduction in heat-induced gastrointestinal hyperpermeability in rats by bovine colostrum and goat milk powders. Journal of Applied Physiology, 96, 2, 650-654.
6. Sinead T. Morrin, Rebecca A. Owens, Marie Le Berre, Jared Q. Gerlach, Lokesh Joshi, Lars Bode, Jane A. Irwin, and Rita M. Hickey. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. Journal of Agricultural and Food Chemistry 2019 67 (7), 1902-1917.
7. Alsayed A, Al-Doori A, Al-Dulaimi A, et al. Influences of bovine colostrum on nasal swab
microbiome and viral upper respiratory tract infections - A case report. Respir Med Case
Rep. 2020;31:101189.
8. van Neerven, R.J.J. The effects of milk and colostrum on allergy and infection: Mechanisms and implications. Animal Frontiers, April 2014. (2); 16–22.
9. Funatogawa K, Tada T, Kuwahara-Arai K, Kirikae T, Takahashi M. Enriched bovine IgG fraction prevents infections with Enterohaemorrhagic Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis, and Mycobacterium avium. Food Science & Nutrition. 2019. Aug;7(8):2726-2730.
10. Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front Nutr. 2018;5:52.
11. Mitra AK, Mahalanabis D, Ashraf H, Unicomb L, Eeckels R, Tzipori S, Hyperimmune cow colostrum reduces diarrhoea due to rotavirus: a double-blind, controlled clinical trial.
Acta Paediatr. 1995 Sep; 84(9):996-1001.
12. Sarker SA, Casswall TH, Mahalanabis D, Alam NH, Albert MJ, Brüssow H, Fuchs GJ, Hammerström L, Successful treatment of rotavirus diarrhea in children with immunoglobulin from immunized bovine colostrum. Pediatr Infect Dis J. 1998 Dec; 17(12):1149-54.
13. Hilpert H, Brüssow H, Mietens C, Sidoti J, Lerner L, Werchau H. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants., J
Infect Dis. 1987 Jul; 156(1):158-66.
14. Ebina T, Sato A, Umezu K, Ishida N, Ohyama S, Ohizumi A, Aikawa K, Katagiri S, Katsushima N, Imai A, Prevention of rotavirus infection by cow colostrum antibody against
human rotaviruses. Lancet. 1983 Oct 29; 2(8357):1029-30.
15. Davidson GP, Whyte PB, Daniels E, Franklin K, Nunan H, McCloud PI, Moore AG, Moore DJ. Passive immunisation of children with bovine colostrum containing antibodies to
human rotavirus. Lancet. 1989 Sep 23; 2(8665):709-12.
16. Davidson G, Tam J, Kirubakaran C.. Passive protection against hospital acquired symptompatic rota virus gasteroenteritis in India and Hong Kong. J Pediatr Gastroenterol
Nutr. (1994) 19:351.
17. Davidson G, Tam J, Kirubakaran C.. Passive immunization for prevention of rotavirus illness in healthy infants. Pediatr Infect Dis J. 1993 Sep; 12(9):718-22.
18. Tawfeek HI, Najim NH, Al-Mashikhi S. Efficacy of an infant formula containing anti-Escherichia coli colostral antibodies from hyperimmunized cows in preventing diarrhea in infants and children: field trial, Int J Infect Dis. 2003 Jun; 7(2):120-8.
19. Saad K, Abo-Elela MGM, El-Baseer KAA, Ahmed AE, Ahmad F-A, Tawfeek MSK, et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine (Baltimore) (2016)
20. Patel K, Rana R. Pedimune in recurrent respiratory infection and diarrhoea–the Indian experience–the pride study. , Indian J Pediatr. (2006) 73:585–91.
21. Patıroğlu T, Kondolot M. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. Clin Respir J. 2013 Jan; 7(1):21-6.
22. Uchida K, Yamagucki H, Kawasaki M, Yamashita K, Kaji N. Bovine late colostrum (colostrum 6 or 7 days after parturition) supplement reduces symptoms of Upper
Respiratory Tract Infection in Infant. Jap J Clin Nutr. (2010) 31:122–7.
23. Nigro A, Nicastro A, Trodella R., Retrospective observational study to investigate Sinerga, a multifactorial nutritional product, and bacterial extracts in the prevention of
recurrent respiratory infections in children. Int J Immunopathol Pharmacol. (2014) 27:455–60.
24. Crooks, C. V., Wall, C. R., Cross, M. L., & Rutherfurd-Markwick, K. J. (2006). The Effect of Bovine Colostrum Supplementation on Salivary IgA in Distance Runners, International Journal of Sport Nutrition and Exercise Metabolism, 16(1), 47-64.


Regarding influenza specifically, studies demonstrating colostrum to be more
effective than the flu vaccine at preventing flu infection and role in COVID recovery.

1. Cesarone, Maria Rosaria, et al. “Prevention of Influenza Episodes With Colostrum Compared With Vaccination in Healthy and High-Risk Cardiovascular Subjects: The
Epidemiologic Study in San Valentino.” Clinical and Applied Thrombosis/Hemostasis, Apr.
2007, pp. 130–136
2. Belcaro G, Cesarone MR, Cornelli U, Pellegini L, Ledda A, Grossi MG, Dugall M, Ruffini I, Fano F, Ricci A, Stuard S, Luzzi R, Grossi MG, Hosoi M. Prevention of flu episodes with
colostrum and Bifivir compared with vaccination: an epidemiological, registry study. Panminerva Med. 2010 Dec;52(4):269-75.
3. Alyne Batista da Silva Galdino, Adriano Henrique do Nascimento Rangel, Harpal Singh Buttar, Manuela Sales Lima Nascimento, Elaine Cristina Gavioli, Riva de Paula Oliveira, Danielle Cavalcanti Sales, Stela Antas Urbano & Katya Anaya (2021) Bovine colostrum: benefits for the human respiratory system and potential contributions for clinical
management of COVID-19, Food and Agricultural Immunology, 32:1, 143-162, DOI: 10.1080/09540105.2021.1892594.
4. Swati Khartode S, Early Recovery of COVID-19 Patients by Using Immunoglobulins Present in Cow Colostrum Food Supplement - A Clinical Study, J Res Med Dent Sci, 2021, 9 (3):186-198.


Select studies demonstrating salivary IgA (sigA) in dairy colostrum as homologous to human (1), and it and lactoferrin’s important role in respiratory tract mucosal immunity and intercepting entry of various bacteria and viruses (2-7).

1. Mach, J.-P. & Pahud, J.-J. (1971) Secretory IgA, a major immunoglobulin in most bovine
external secretions. J. Immunol.106:552–563.
2. Woof, J.M. and Kerr, M.A. (2006), The function of immunoglobulin A in immunity. J. Pathol., 208: 270-282
3. Renegar K.B., Small P.A., Boykins L.G. and Wright P.F. (2004) Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 173,
1978–1986.
4. van der Strate B.W.A., Beljaars L., Molema G., Harmsen M.C. and Meijer D.K.F. (2001) Antiviral activities of lactoferrin. Antiviral. Res. 52, 225–239.
5. Wakabayashi H., Oda H., Yamauchi K., Abe F. (2014). Lactoferrin for prevention of common viral infections. (2014) Journal of Infection and Chemotherapy. 20 (11); 666-671.
6. Paul Naaber, Elina Lehto, Seppo Salminen, Marika Mikelsaar, Inhibition of adhesion of Clostridium difficile to Caco-2 cells, FEMS Immunology & Medical Microbiology, Volume 14,
Issue 4, July 1996, Pages 205–209
7. Olson A, Diebel LN, Liberati DM. Effect of host defenses on Clostridium difficile toxin-induced intestinal barrier injury. J Trauma Acute Care Surg. 2013;74(4):983–990.


Severe COVID disease linked with disruption of the mucosal
barrier (1).

1. Leila B. Giron, Harsh Dweep, Xiangfan Yin, Han Wang, Mohammad Damra, Aaron R. Goldman, Nicole Gorman, Clovis S. Palmer, Hsin-Yao Tang, Maliha W. Shaikh, Christopher B. Forsyth, Robert A. Balk, Netanel F Zilberstein, Qin Liu, Andrew Kossenkov, Ali Keshavarzian, Alan Landay, Mohamed Abdel-Mohsen. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.11.13.20231209.


Select studies supporting the role of bovine colostrum in sports performance,
fitness, and recovery (1-5) and bolstering hair growth (6-7).


1. Antonio, J et al. “The effects of bovine colostrum supplementation on body composition and exercise performance in active men and women.” Nutrition (Burbank, Los Angeles County, Calif.) vol. 17,3 (2001): 243-7. doi:10.1016/s0899-9007(00)00552-9.
2. Davison, Glen. “Bovine colostrum and immune function after exercise.” Medicine and sport science vol. 59 (2012): 62-69. doi:10.1159/000341966
3. Główka, Natalia, and Małgorzata Woźniewicz. “Potential use of Colostrum Bovinum supplementation in athletes - A review.” Acta scientiarum polonorum. Technologia
alimentaria vol. 18,2 (2019): 115-123. doi:10.17306/J.AFS.0654.
4. Shing, C.M., Hunter, D.C. & Stevenson, L.M. Bovine Colostrum Supplementation and Exercise Performance. Sports Med 39, 1033–1054 (2009). https://doi.org/10.2165/11317860-000000000-00000
5. Shing CM, Peake JM, Suzuki K, Jenkins DG, Coombes JS. A pilot study: bovine colostrum supplementation and hormonal and autonomic responses to competitive cycling. J Sports Med Phys Fitness. 2013 Oct;53(5):490-501.
https://www.journalofdairyscience.org/article/S0022-0302(12)00343-8/fulltext.

6. Kim H, Jang Y, Kim EH, Jang H, Cho H, Han G, Song HK, Kim SH, Yang Y. Potential of Colostrum-Derived Exosomes for Promoting Hair Regeneration Through the Transition From Telogen to Anagen Phase. Front Cell Dev Biol. 2022 Mar 10;10:81520.
7. Trüeb RM. Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia. Skin Appendage Disord. 2018 Apr;4(2):90-95. doi: 10.1159/000479333.

Select studies supporting the role of bovine colostrum in supporting blood glucose levels (1-2)

1. Kim JH, Jung WS, Choi NJ, Kim DO, Shin DH, Kim YJ. Health-promoting effects of bovine colostrum in Type 2 diabetic patients can reduce blood glucose, cholesterol, triglyceride and ketones. J Nutr Biochem. 2009 Apr;20(4):298-303. doi: 10.1016/j.jnutbio.2008.04.002. Epub 2008 Jul 7. PMID: 18602824.

2. Nikolic I, Stojanovic I, Vujicic M, Fagone P, Mangano K, Stosic-Grujicic S, Nicoletti F, Saksida T. Standardized bovine colostrum derivative impedes development of type 1 diabetes in rodents. Immunobiology. 2017 Feb;222(2):272-279. doi: 10.1016/j.imbio.2016.09.013. Epub 2016 Sep 24. PMID: 27693017.

Select studies supporting the role of bovine colostrum in enhancing skin health (1-4) 

1. Kazimierska K, Kalinowska-Lis U. Milk Proteins-Their Biological Activities and Use in Cosmetics and Dermatology. Molecules. 2021 May 28;26(11):3253. doi: 10.3390/molecules26113253. PMID: 34071375; PMCID: PMC8197926.

2. Vollmer DL, West VA, Lephart ED. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int J Mol Sci. 2018 Oct 7;19(10):3059. doi: 10.3390/ijms19103059. PMID: 30301271; PMCID: PMC6213755.

3. Han G, Kim H, Kim DE, Ahn Y, Kim J, Jang YJ, Kim K, Yang Y, Kim SH. The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics. 2022 Jan 27;14(2):307. doi: 10.3390/pharmaceutics14020307. PMID: 35214040; PMCID: PMC8877896.

4. Murata M, Satoh T, Wakabayashi H, Yamauchi K, Abe F, Nomura Y. Oral administration of bovine lactoferrin attenuates ultraviolet B-induced skin photodamage in hairless mice. J Dairy Sci. 2014 Feb;97(2):651-8. doi: 10.3168/jds.2013-7153. Epub 2013 Dec 18. PMID: 24359814.

Lolou V, Panayiotidis MI. Functional Role of Probiotics and Prebiotics on Skin Health and Disease. Fermentation. 2019; 5(2):41.https://doi.org/10.3390/fermentation5020041

Select study supporting bovine colostrum in the role of hormonal support and balance (1)

1. Shing CM, Peake JM, Suzuki K, Jenkins DG, Coombes JS. A pilot study: bovine colostrum supplementation and hormonal and autonomic responses to competitive cycling. J Sports Med Phys Fitness. 2013 Oct;53(5):490-501. PMID: 23903529.

Select studies supporting the effects of oral ingestion of bovine colostrum on body composition (1-2) 

1. Antonio J, Sanders MS, Van Gammeren D. The effects of bovine colostrum supplementation on body composition and exercise performance in active men and women. Nutrition. 2001 Mar;17(3):243-7. doi: 10.1016/s0899-9007(00)00552-9. PMID: 11312068.

2. Davison G. The Use of Bovine Colostrum in Sport and Exercise. Nutrients. 2021 May 24;13(6):1789. doi: 10.3390/nu13061789. PMID: 34073917; PMCID: PMC8225123.