RESEARCH STUDIES

Safety. Transparency. Scientific Rigor.

There is a plethora of published research on the important role of mucosal immunity in all aspects of health.
And, how ARMRA's clinically-proven ingredients strengthen this pathway. 

You've got better things to do than the legwork and guesswork. We've got you covered. But if you are curious, here's a peek at some of the research behind ARMRA's development.


Select studies demonstrating the relevance of the immune mucosal barrier as a therapeutic target and the pathological implications of its disruption by modern threats- including bacterial and viral infections (1-4), food allergy (5-9), various autoimmune conditions (10-14), autism (15-17), among others (18,19).


1. Bischoff, Stephan C et al. “Intestinal permeability--a new target for disease prevention and therapy.” BMC gastroenterology vol. 14 189. 18 Nov. 2014.
2. Chelakkot et al, “Mechanisms regulating intestinal barrier integrity and its pathological implications.” Experimental & Molecular Medicine 50, Article number: 103 (2018).
3. Vancamelbeke, Maaike, and Séverine Vermeire. “The intestinal barrier: a fundamental role in health and disease.” Expert review of gastroenterology & hepatology vol. 11,9 (2017): 821-834.
4. Groschwitz, Katherine R, and Simon P Hogan. “Intestinal barrier function: molecular regulation and disease pathogenesis.” The Journal of allergy and clinical immunology vol. 124,1 (2009): 3-20

5. Järvinen KM, Konstantinou GN, Pilapil M, et al. Intestinal permeability in children with food allergy on specific elimination diets. Pediatr Allergy Immunol. 2013;24(6):589–595. doi:10.1111/pai.12106
6. Samadi, Nazanin et al.. The role of gastrointestinal permeability in food allergy. Annals of Allergy, Asthma & Immunology, Volume 121, Issue 2, 168 - 173Ch
7. Stefka A. T. et al. .2014. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. USA 111: 13145–13150.
8. Perrier C, Corthesy B. Gut permeability and food allergies. Clin Exp Allergy 2011; 41: 20–28
9. Chahine, B.G. & Bahna, S.L. (2010). The role of the gut mucosal immunity in the development of tolerance versus development of allergy to food. Current Opinion in Allergy and Clinical Immunology, 10, 4, 394-399

10. Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol (2015) 8(5):5153–60.
11. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases.
12. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci (2012) 1258:25–33.
13. Carlos R Camara-Lemarroy, Luanne Metz, Jonathan B Meddings, Keith A Sharkey, V Wee Yong, The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics, Brain, Volume 141, Issue 7, July 2018, Pages 1900–1916.
14. Cereijido, M., Contreras, R.G., Flores-Benítez, D., Flores-Maldonado, C., Larre, I., Ruiz, A. & Shoshani, L. (2007). New diseases derived or associated with the tight junction. Archives of Medical Research, 38, 5, 465-478

15. Liu Z., Li N., Neu J. Tight Junctions, Leaky Intestines, and Pediatric Diseases. Acta Paediatr. 2007;94:386–393.
16. White John F. Intestinal Pathophysiology in Autism. Exp. Biol. Med. 2003;228:639–649.
17. Siniscalco D., Brigida A.L., Antonucci N. On overview of neuro-immune gut brain axis dysfunction in ASD. AIMS Mol. Sci. 2018;5:166–172.
18. R.C. Anderson, J.E. Dalziel, P.K. Gopal, S. Bassett, A. Ellis and N.C. Roy (2012). The Role of Intestinal Barrier Function in Early Life in the Development of Colitis, Colitis, Dr 19. Fukata (Ed.), ISBN: 978-953-307-799-4, InTech, Available from: http://www.intechopen.com/books/colitis/the-role-of-intestinal-barrier-function-in-early-life-inthe-development-of-colitis


Select studies demonstrating immaturity of the intestinal mucosal barrier in infants, pathological implications, and mechanisms by which infant milk facilitates maturation of the mucosal barrier and immune protection (1-13).

1. Neu, J. (2007). Gastrointestinal maturation and implications for infant feeding. Early Human Development, 83, 12, 767-775
2. Maheshwari, A. & Zemlin, M. (2009). Ontogeny of the intestinal immune system. h [Haematologica Reports], 2, 10, 18-26
3. Mayer, L. (2003). Mucosal immunity. Pediatrics, 111, 6 III, 1595-1600
4. Cummins, A.G. & Thompson, F.M. (2002). Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut, 51, 5, 748-754
5. Udall, J., Pang, K., Fritze, L. et al. Development of Gastrointestinal Mucosal Barrier. I. The Effect of Age on Intestinal Permeability to Macromolecules. Pediatr Res 15, 241–244 (1981).
6. Udall, J., Colony, P., Fritze, L. et al. Development of Gastrointestinal Mucosal Barrier. II. The Effect of Natural Versus Artificial Feeding on Intestinal Permeability to Macromolecules. Pediatr Res 15, 245–249 (1981)
7. Catassi, C., Bonucci, A., Coppa, G.V., Carlucci, A. & Giorgi, P.L. (1995). Intestinal permeability changes during the first month: Effect of natural versus artificial feeding. Journal of Pediatric Gastroenterology and Nutrition, 21, 4, 383-386
8. Cacho, Nicole Theresa, and Robert M Lawrence. “Innate Immunity and Breast Milk.” Frontiers in immunology vol. 8 584. 29 May. 2017
9. Palmeira, Patricia; Carneiro-sampaio, Magda. Immunology of breast milk. Rev. Assoc. Med. Bras., São Paulo , v. 62, n. 6, p. 584-593, Sept. 2016
10. Taylor, S.N., Basile, L.A., Ebeling, M. & Wagner, C.L. (2009). Intestinal permeability in preterm infants by feeding type: Mother's milk versus formula. Breastfeeding Medicine, 4, 1, 11-15
11. Wold, A. & Adlerberth, I. (2000). Breast feeding and intestinal microbiota of the infant - implications for protection against infectious diseases. Advances in Experimental Medicine and Biology, 478, 77-93
12. Verhasselt, V. (2010). Neonatal tolerance under breastfeeding influence. Current Opinion in Immunology, 22, 5, 623-630
13. Schreiber, R.A. & Walker, W.A. (1988). The gastrointestinal barrier: Antigen uptake and perinatal immunity. Annals of Allergy, 61, 6 Pt 2, 3-12.


Further studies demonstrating efficacy of components of first milk in fortifying mucosal immunity (1-5), including increasing adherence of only healthy microbiome bacteria in the gut (6) - and protecting against the development of and/or expediting recovery from respiratory and GI illnesses (7-22).

1. Newburg, D., Walker, W. Protection of the Neonate by the Innate Immune System of Developing Gut and of Human Milk. Pediatr Res 61, 2–8 (2007)
2. Jakaitis, Brett M, and Patricia W Denning. “Human breast milk and the gastrointestinal innate immune system.” Clinics in perinatology vol. 41,2 (2014): 423-35. doi:10.1016/j.clp.2014.02.011
3. Snead T. Morrin, Rebecca A. Owens, Marie Le Berre, Jared Q. Gerlach, Lokesh Joshi, Lars Bode, Jane A. Irwin, and Rita M. Hickey. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. Journal of Agricultural and Food Chemistry 2019 67 (7), 1902-1917
4. Kamau, S.M., Lu, R.R., Chen, W., Liu, X.M., Tian, F.W., Shen, Y. & Gao, T. (2010). Functional significance of bioactive peptides derived from milk proteins. Food Reviews International, 26, 4, 386-401
5. Prosser, C., Stelwagen, K., Cummins, R., Guerin, P., Gill, N. & Milne, C. (2004). Reduction in heat-induced gastrointestinal hyperpermeability in rats by bovine colostrum and goat milk powders. Journal of Applied Physiology, 96, 2, 650-654

6. Sinead T. Morrin, Rebecca A. Owens, Marie Le Berre, Jared Q. Gerlach, Lokesh Joshi, Lars Bode, Jane A. Irwin, and Rita M. Hickey. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. Journal of Agricultural and Food Chemistry 2019 67 (7), 1902-1917

7. van Neerven, R.J.J. The effects of milk and colostrum on allergy and infection: Mechanisms and implications. Animal Frontiers, April 2014. (2); 16–22
8. Funatogawa K, Tada T, Kuwahara-Arai K, Kirikae T, Takahashi M. Enriched bovine IgG fraction prevents infections with Enterohaemorrhagic Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis, and Mycobacterium avium. Food Science & Nutrition. 2019 Aug;7(8):2726-2730.
9. Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front Nutr. 2018;5:52.
10. Mitra AK, Mahalanabis D, Ashraf H, Unicomb L, Eeckels R, Tzipori S, Hyperimmune cow colostrum reduces diarrhoea due to rotavirus: a double-blind, controlled clinical trial. Acta Paediatr. 1995 Sep; 84(9):996-1001.
11. Sarker SA, Casswall TH, Mahalanabis D, Alam NH, Albert MJ, Brüssow H, Fuchs GJ, Hammerström L, Successful treatment of rotavirus diarrhea in children with immunoglobulin from immunized bovine colostrum. Pediatr Infect Dis J. 1998 Dec; 17(12):1149-54.
12. Hilpert H, Brüssow H, Mietens C, Sidoti J, Lerner L, Werchau H. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants., J Infect Dis. 1987 Jul; 156(1):158-66.
13. Ebina T, Sato A, Umezu K, Ishida N, Ohyama S, Ohizumi A, Aikawa K, Katagiri S, Katsushima N, Imai A, Prevention of rotavirus infection by cow colostrum antibody against human rotaviruses. Lancet. 1983 Oct 29; 2(8357):1029-30.
14. Davidson GP, Whyte PB, Daniels E, Franklin K, Nunan H, McCloud PI, Moore AG, Moore DJ. Passive immunisation of children with bovine colostrum containing antibodies to human rotavirus. Lancet. 1989 Sep 23; 2(8665):709-12.
15. Davidson G, Tam J, Kirubakaran C.. Passive protection against hospital acquired symptompatic rota virus gasteroenteritis in India and Hong Kong. J Pediatr Gastroenterol Nutr. (1994) 19:351.
16. Davidson G, Tam J, Kirubakaran C.. Passive immunization for prevention of rotavirus illness in healthy infants. Pediatr Infect Dis J. 1993 Sep; 12(9):718-22.
17. Tawfeek HI, Najim NH, Al-Mashikhi S. Efficacy of an infant formula containing anti-Escherichia coli colostral antibodies from hyperimmunized cows in preventing diarrhea in infants and children: field trial, Int J Infect Dis. 2003 Jun; 7(2):120-8.
18. Saad K, Abo-Elela MGM, El-Baseer KAA, Ahmed AE, Ahmad F-A, Tawfeek MSK, et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine (Baltimore) (2016)
19. Patel K, Rana R. Pedimune in recurrent respiratory infection and diarrhoea–the Indian experience–the pride study. , Indian J Pediatr. (2006) 73:585–91.
20. Patıroğlu T, Kondolot M. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. Clin Respir J. 2013 Jan; 7(1):21-6.
21. Uchida K, Yamagucki H, Kawasaki M, Yamashita K, Kaji N. Bovine late colostrum (colostrum 6 or 7 days after parturition) supplement reduces symptoms of Upper Respiratory Tract Infection in Infant. Jap J Clin Nutr. (2010) 31:122–7.
22. Nigro A, Nicastro A, Trodella R., Retrospective observational study to investigate Sinerga, a multifactorial nutritional product, and bacterial extracts in the prevention of recurrent respiratory infections in children. Int J Immunopathol Pharmacol. (2014) 27:455–60.
23. Crooks, C. V., Wall, C. R., Cross, M. L., & Rutherfurd-Markwick, K. J. (2006). The Effect of Bovine Colostrum Supplementation on Salivary IgA in Distance Runners, International Journal of Sport Nutrition and Exercise Metabolism, 16(1), 47-64.


Regarding influenza specifically, studies demonstrating colostrum to be more effective than the flu vaccine at preventing flu infection (1,2).

1. Cesarone, Maria Rosaria, et al. “Prevention of Influenza Episodes With Colostrum Compared With Vaccination in Healthy and High-Risk Cardiovascular Subjects: The Epidemiologic Study in San Valentino.” Clinical and Applied Thrombosis/Hemostasis, Apr. 2007, pp. 130–136
2. Belcaro G, Cesarone MR, Cornelli U, Pellegini L, Ledda A, Grossi MG, Dugall M, Ruffini I, Fano F, Ricci A, Stuard S, Luzzi R, Grossi MG, Hosoi M. Prevention of flu episodes with colostrum and Bifivir compared with vaccination: an epidemiological, registry study. Panminerva Med. 2010 Dec;52(4):269-75.


Select studies demonstrating salivary IgA (sigA) in dairy colostrum as homologous to human (1), and it and lactoferrin’s important role in respiratory tract mucosal immunity and intercepting entry of various bacteria and viruses (2-7).

1. Mach, J.-P. & Pahud, J.-J. (1971) Secretory IgA, a major immunoglobulin in most bovine external secretions. J. Immunol.106:552–563.
2. Woof, J.M. and Kerr, M.A. (2006), The function of immunoglobulin A in immunity. J. Pathol., 208: 270-282
3. Renegar K.B., Small P.A., Boykins L.G. and Wright P.F. (2004) Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 173, 1978–1986
4. van der Strate B.W.A., Beljaars L., Molema G., Harmsen M.C. and Meijer D.K.F. (2001) Antiviral activities of lactoferrin. Antiviral. Res. 52, 225–239
5. Wakabayashi H., Oda H., Yamauchi K., Abe F. (2014). Lactoferrin for prevention of common viral infections. (2014) Journal of Infection and Chemotherapy. 20 (11); 666-671
6. Paul Naaber, Elina Lehto, Seppo Salminen, Marika Mikelsaar, Inhibition of adhesion of Clostridium difficile to Caco-2 cells, FEMS Immunology & Medical Microbiology, Volume 14, Issue 4, July 1996, Pages 205–209
7. Olson A, Diebel LN, Liberati DM. Effect of host defenses on Clostridium difficile toxin-induced intestinal barrier injury. J Trauma Acute Care Surg. 2013;74(4):983–990.


Select studies demonstrating air pollution as facilitating the spread and boosting infection rates of viral infections (1,2) - association with avian flu (3,4), RSV (5), and measles (6,7), New research in Italy demonstrates this association with COVID in the northern region (8).

1. Ciencewicki J et al., 2007. "Air Pollution and Respiratory Viral Infection" Inhalation Toxicology, 19: 1135-1146
2. Despres VR, et al., 2012 "Primary biological aerosol particles in the atmosphere: a review ”Tellus B, 64, 15598
3. Sedlmaier N., et al., 2009 "Generation of avian influenza virus (AIV) contaminated fecal fine particulate matter (PM 2.5 ): Genome and infectivity detection and calculation of immission "Veterinary Microbiology 139, 156-164
4. Chen PS., Et al., 2010 “Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days "Environmental Health Perspectives, 118, 9
5. Ye Q., et al., 2016 "Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children "Environ Science and Pollution Research, 23, 20178-20185
6. Chen G., et al., 2017 "Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. " Environmental Research 156, 306-311
7. Peng L., et al., 2020 "The effects of air pollution and meteorological factors on measles cases in Lanzhou, China "Environmental Science and Pollution Research
Milano, Andrea Piazzalunga-Esperto. "ELEMENTI DI CONOSCENZA SCIENTIFICA."